Non-linear RLS-based algorithm for pattern classification

نویسندگان

  • Emilio Soria-Olivas
  • Gustavo Camps-Valls
  • José David Martín-Guerrero
  • Javier Calpe-Maravilla
  • Joan Vila-Francés
  • Antonio J. Serrano
چکیده

A new non-linear Recursive Least Squares (RLS) algorithm is presented in the context of pattern classification problems. The algorithm incorporates the non-linearity of the filter’s output in the updating rules of the classical RLS algorithm. The proposed method yields lower stationary error levels when compared to the standard LMS and RLS algorithms in a classical application of pattern classification, such as the channel equalization problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

The relationship between dipping-non-dipping arterial blood pressure pattern and frequency of restless leg syndrome with related factors

OBJECTIVE The lack of nocturnal decline in blood pressure (BP) is associated with an increase in cardiovascular events. Restless leg syndrome (RLS) is an uncomfortable feeling in which the patient wants to budge the legs with ache in the legs. RLS also increases the hypertension and cardiovascular risk. In this study, we aimed to evaluate the relationship between dipping and non-dipping blood p...

متن کامل

Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network

An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...

متن کامل

Increasing the accuracy of the classification of diabetic patients in terms of functional limitation using linear and nonlinear combinations of biomarkers: Ramp AUC method

The Area under the ROC Curve (AUC) is a common index for evaluating the ability of the biomarkers for classification. In practice, a single biomarker has limited classification ability, so to improve the classification performance, we are interested in combining biomarkers linearly and nonlinearly. In this study, while introducing various types of loss functions, the Ramp AUC method and some of...

متن کامل

Efficient approximate Regularized Least Squares by Toeplitz matrix

Machine Learning based on the Regularized Least Square (RLS) model requires one to solve a system of linear equations. Direct-solution methods exhibit predictable complexity and storage, but often prove impractical for large-scale problems; Iterative methods attain approximate solutions at lower complexities, but heavily depend on learning parameters. The paper shows that applying the propertie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2006